

CONCOURS EDHEC - ADMISSION SUR TITRES

EN PREMIERE ANNEE

7 AVRIL 2016

EPREUVE DE MATHEMATIQUES

Durée de l'épreuve : 3 heures

Coefficient: 4

Aucun document ou matériel électronique n'est autorisé.

Le sujet comporte 3 exercices indépendants

Consignes

La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

Les candidats sont invités à encadrer, dans la mesure du possible, les résultats de leurs calculs.

Ils ne doivent faire usage d'aucun document; seule l'utilisation d'une règle graduée est autorisée.

Si au cours de l'épreuve, un candidat repère ce qui lui semble être une erreur d'énoncé, il la signalera sur sa copie et poursuivra sa composition en expliquant les raisons des initiatives qu'il sera amené à prendre.

A l'issue de chaque composition écrite, tout candidat est tenu sous peine d'élimination, de remettre au surveillant une copie (même blanche, qui sera alors signée). La seule responsabilité du candidat est engagée dans le cas contraire. Tout candidat sortant avant la fin des épreuves doit obligatoirement remettre le sujet en même temps que sa copie.

Exercice 1

Dans cet exercice, n est un entier naturel supérieur ou égal à 2.

On dispose d'un paquet de n cartes, C_1 , C_2 , ..., C_n , que l'on distribue intégralement, les unes après les autres, à n joueurs, J_1 , J_2 , ..., J_n , de la façon suivante : la carte C_1 est donnée au joueur J_1 , puis la carte C_2 est distribuée de manière équiprobable entre J_1 et J_2 , la distribution se poursuivant de telle manière que, pour tout i de $[\![1,n]\!]$, la carte C_i soit distribuée de manière équiprobable entre J_1 , J_2 , ..., J_i , la dernière carte C_n étant donc distribuée de manière équiprobable entre J_1 , J_2 , ..., J_n . On note J_n la variable aléatoire égale au nombre de joueurs qui n'ont reçu aucune carte à la fin de la distribution.

- 1) a) Déterminer $X_n(\Omega)$.
 - b) Montrer que $P(X_n = 0) = \frac{1}{n!}$ et $P(X_n = n 1) = \frac{1}{n!}$.
- 2) Pour tout i de [1,n], on note B_i la variable aléatoire qui vaut 1 si J_i n'a reçu aucune carte à la fin de la distribution et qui vaut 0 sinon.
 - a) Montrer que, pour tout i de [1,n], $P(B_i = 1) = \frac{i-1}{n}$.
 - b) Exprimer, en justifiant le résultat, la variable X_n en fonction des variables B_i .
 - c) En déduire l'espérance de X_n .
- 3) Loi de X_4 .
 - a) Que vaut la somme $\sum_{k=0}^{3} P(X_4 = k)$?
 - b) En utilisant certaines des questions précédentes, donner la loi de X_4 .
- 4) a) Montrer que, pour tout couple (i, j) de $[1, n]^2$ tel que i < j, on a l'égalité suivante :

$$P([B_i=1] \cap [B_j=1]) = \frac{(i-1)(j-2)}{n(n-1)}$$

- b) En déduire la covariance des variables B_i et B_j pour i < j.
- c) Calculer enfin la variance de X_n .

Exercice 2

L'espérance et la variance d'une variable aléatoire X sont respectivement notées E(X) et V(X). Les variables aléatoires étudiées dans ce problème sont supposées toutes définies sur un même espace probabilisé (Ω, \mathcal{A}, P) .

On désigne par n un entier naturel au moins égal à 2 et on considère n variables aléatoires $X_1,...,X_n$, mutuellement indépendantes et suivant toutes la loi uniforme sur $[0,\theta]$, le paramètre θ étant un réel strictement positif inconnu que l'on cherche à estimer.

1) Donner l'espérance et la variance de X_1 .

- 2) On pose $S_n = \frac{2}{n} \sum_{k=1}^{n} X_k$.
 - a) Montrer que S_n est un estimateur sans biais de θ .
 - b) Donner la valeur du risque quadratique de S_n , noté $r_{\theta}(S_n)$, en tant qu'estimateur de θ .
 - c) Déterminer, pour tout réel ε strictement positif, $\lim_{n \to +\infty} P(|S_n \theta| \ge \varepsilon)$.

 S_n est-il un estimateur convergent de θ ?

- 3) Soit $T_n = \max(X_1, ..., X_n)$.
 - a) Déterminer la fonction de répartition F_n de T_n et en déduire une densité f_n de T_n .
 - b) Calculer $E(T_n)$ et en déduire un estimateur sans biais de θ .
- c) Calculer $V(T_n)$ et en déduire la valeur du risque quadratique de T_n , noté $r_{\theta}(T_n)$, en tant qu'estimateur de θ .
 - d) Déterminer, pour tout réel ε strictement positif, $\lim_{n\to+\infty} P(|T_n-\theta| \ge \varepsilon) = 0$.

 T_n est-il un estimateur convergent de θ ?

- 4) Des deux estimateurs S_n et T_n , lequel choisiriez-vous pour obtenir une estimation de θ ?
- 5) Montrer que, pour tout ε appartenant à $]0,\theta]$, on a : $P(|T_n \theta| \ge \varepsilon) = \left(\frac{\theta \varepsilon}{\theta}\right)^n$.

Cette dernière égalité corrobore-t-elle la conclusion donnée à la troisième question ?

Problème

On note E l'espace vectoriel des fonctions polynomiales et E_2 l'espace vectoriel des fonctions polynomiales de degré inférieur ou égal à 2. On note e_0 , e_1 , e_2 les fonctions définies par :

$$\forall t \in \mathbb{R}, e_0(t) = 1, e_1(t) = t \text{ et } e_2(t) = t^2$$

On rappelle que la famille (e_0, e_1, e_2) est une base de E_2 .

Préliminaire

1) Pour tout réel x et pour tout entier naturel k, on pose :

$$I_k(x) = \int_{x}^{+\infty} t^k e^{-t} dt$$

Montrer que, pour tout k de \mathbb{N} , $I_k(x)$ est une intégrale convergente.

2) Justifier que, pour tout réel x et pour toute fonction P de E, l'intégrale $\int_{x}^{+\infty} P(t)e^{-t}dt$ est convergente.

On considère désormais l'application φ qui, à toute fonction P de E, associe la fonction notée $\varphi(P)$ définie par :

$$\forall x \in \mathbb{R} , (\varphi(P))(x) = e^x \int_x^{+\infty} P(t)e^{-t} dt$$

Partie 1. Étude d'un cas particulier

Dans cette partie, on note φ_2 l'application qui, à toute fonction P de E_2 , associe la fonction notée $\varphi_2(P)$ définie par : $\varphi_2(P) = \varphi(P)$.

3

- 3) a) Donner la valeur explicite de $I_0(x)$ en fonction de x.
 - b) Établir que : $I_1(x) = (1+x)e^{-x}$ et $I_2(x) = (2+2x+x^2)e^{-x}$.
- 4) Montrer que φ_2 est un endomorphisme de E_2 .
- 5) a) Déterminer $\varphi_2(e_0)$, $\varphi_2(e_1)$ et $\varphi_2(e_2)$ en fonction de e_0 , e_1 , e_2 .
 - b) Écrire la matrice A de φ_2 dans la base (e_0, e_1, e_2) .
 - c) L'endomorphisme φ_2 est-il diagonalisable ? Bijectif ?
- 6) On pose N = A I.
 - a) Calculer N^2 puis N^3 .
 - b) En déduire, pour tout entier naturel n, l'expression de A^n sous forme de tableau matriciel.

Partie 2. Étude du cas général

Pour toute fonction R de E, on note R' le polynôme dérivé de R.

On admet que φ est un endomorphisme de E.

- 7) Montrer que $\varphi(P)$ est de classe C^1 sur \mathbb{R} puis donner une relation entre $(\varphi(P))'(x)$, $\varphi(P)(x)$ et P(x).
- 8) Déterminer Ker φ , puis dire si φ est injectif.
- 9) On suppose, dans cette question, qu'un réel λ non nul est valeur propre de ϕ et on note P un vecteur propre associé.
 - a) Montrer que l'on a la relation $P' = \frac{\lambda 1}{\lambda} P$.
 - b) On note h la fonction définie par : $\forall x \in \mathbb{R}$, $h(x) = P(x) \exp\left(\frac{1-\lambda}{\lambda}x\right)$

Montrer que h est constante et en déduire qu'il existe un réel K tel que :

$$\forall x \in \mathbb{R}, \ P(x) = K \exp\left(\frac{\lambda - 1}{\lambda}x\right)$$

c) En déduire que 1 est la seule valeur propre de φ et donner le sous-espace propre associé.

CONCOURS EDHEC - ADMISSION SUR TITRES

EN PREMIERE ANNEE

AVRIL 2016

EPREUVE DE MATHEMATIQUES

CORRIGE

Exercice 1

1) a) On peut à chaque fois donner une carte à un joueur différent (la carte C_1 à J_1 , la carte C_2 à J_2 , ..., la carte C_n à J_n) et dans ce cas, il n'y a aucun joueur sans carte, on peut également donner toutes les cartes au joueur C_1 et dans ce cas, il y a n-1 joueurs sans carte. Comme les situations intermédiaires sont toutes envisageables, on obtient :

$$X_n(\Omega) = [0, n-1]$$

b) D'après ce qui précède, on a : $P(X_n = 0) = 1 \times \frac{1}{2} \times \frac{1}{3} \times ... \times \frac{1}{n}$, ce qui donne :

$$P(X_n=0)=\frac{1}{n!}$$

Le même calcul donne aussi :

$$P(X_n = n - 1) = \frac{1}{n!}$$

2) a) L'événement $(B_i = 1)$ est réalisé si et seulement si les cartes C_i , C_{i+1} , ..., C_n ont été distribuées à un autre joueur que le joueur J_i (les cartes précédentes ne le concernent pas).

La probabilité que la carte C_j ($j \ge i$) ne soit pas donnée au joueur J_i est égale à $\frac{j-1}{j}$ donc on trouve :

$$P(B_i = 1) = \frac{i-1}{i} \times \frac{i}{i+1} \times \frac{i+1}{i+2} \times \dots \times \frac{j-1}{j} \times \frac{j}{j+1} \times \dots \times \frac{n-1}{n}$$

Après simplification, on a :

$$P(B_i = 1) = \frac{i-1}{n}$$

b) Classiquement, dans la somme $\sum_{i=1}^{n} B_i$, il y az autant de termes égaux à 1 que de joueurs sans carte, et comme les autres termes sont nuls, cette somme est égale au nombre de joueurs sans carte. On a donc :

$$X_n = \sum_{i=1}^n B_i$$

c) Par linéarité de l'espérance, on trouve :

$$E(X_n) = \sum_{i=1}^n E(B_i) = \sum_{i=1}^n \frac{i-1}{n} = \frac{1}{n} \sum_{k=0}^{n-1} k = \frac{1}{n} \times \frac{n(n-1)}{2}$$

Après simplification, on obtient :

$$E(X_n) = \frac{n-1}{2}$$

3) a) Comme $(X = k)_{0 \le k \le 3}$ est un système complet d'événements, on a :

$$\sum_{k=0}^{3} P(X=k) = 1$$

b) D'après la question 1b), on a : $P(X=0) = \frac{1}{24}$ et $P(X=3) = \frac{1}{24}$.

D'après la question 3a), on en déduit : $P(X=1) + P(X=2) = 1 - \frac{1}{24} - \frac{1}{24} = \frac{11}{12}$

Avec la question 2c), on a: $P(X=1)+2P(X=2)+3P(X=3)=\frac{3}{2}$, donc comme $P(X=3)=\frac{1}{6}$, on obtient: $P(X=1)+2P(X=2)=\frac{11}{8}$.

On doit donc résoudre le système : $\begin{cases} P(X=1) + P(X=2) = \frac{11}{12} \\ P(X=1) + 2P(X=2) = \frac{11}{8} \end{cases}$

On trouve alors : $P(X=1) = \frac{11}{24}$ et $P(X=2) = \frac{11}{24}$.

La loi de X_4 est donc donnée par :

$$P(X=0) = \frac{1}{24}$$
, $P(X=1) = P(X=2) = \frac{11}{24}$ et $P(X=3) = \frac{1}{24}$

4) a) L'événement $[B_i = 1] \cap [B_j = 1]$ est réalisé si et seulement si les cartes C_i , C_{i+1} , ..., C_n ont été distribuées à d'autres joueurs que J_i et J_j (les cartes précédentes ne les concernent pas). Pour tout k de [i, j-1], la carte C_k n'est pas distribuée à J_i (et certainement pas à J_j puisque ce n'est pas son tour) avec la probabilité $\frac{k-1}{k}$ et, pour tout k de [j,n], la carte C_k n'est pas distribuée à J_i et pas distribuée à J_j avec la probabilité $\frac{k-2}{k}$

On a donc: $P([B_i = 1] \cap [B_j = 1]) = \left(\prod_{k=i}^{j-1} \frac{k-1}{k}\right) \left(\prod_{k=j}^{n} \frac{k-2}{k}\right)$ et par "télescopage", on obtient: $P([B_i = 1] \cap [B_j = 1]) = \frac{i-1}{j-1} \times \frac{(j-1)(j-2)}{n(n-1)}$. En simplifiant, on trouve bien:

$$P([B_i=1] \cap [B_j=1]) = \frac{(i-1)(j-2)}{n(n-1)}$$

b) Comme B_i et B_j sont des variables de Bernoulli, on a sans problème :

$$E(B_iB_j) = P([B_i = 1] \cap [B_j = 1]) = \frac{(i-1)(j-2)}{n(n-1)}$$

On sait que $Cov(B_i, B_j) = E(B_i B_j) - E(B_i) E(B_j)$ et on en déduit :

$$Cov(B_i, B_j) = \frac{(i-1)(j-2)}{n(n-1)} - \frac{i-1}{n} \times \frac{j-1}{n} = \frac{n(i-1)(j-2) - (n-1)(i-1)(j-1)}{n^2(n-1)}.$$

En factorisant, on a : $Cov(B_i, B_j) = \frac{(i-1)(n(j-2)-(n-1)(j-1))}{n^2(n-1)}$

En développant la parenthèse, on a finalement :

$$\operatorname{Cov}(B_i, B_j) = -\frac{(i-1)(n-j+1)}{n^2(n-1)}$$

c) On sait que
$$V(X_n) = \sum_{i=1}^n V(B_i) + 2\sum_{i=1}^{n-1} \sum_{j=i+1}^n \text{Cov}(B_i, B_j)$$
.

On a
$$V(B_i) = \frac{i-1}{n} \left(1 - \frac{i-1}{n} \right) = \frac{(i-1)(n-i+1)}{n^2}$$

En remplaçant, on obtient :
$$V(X_n) = \sum_{i=1}^n \frac{(i-1)(n-i+1)}{n^2} - 2\sum_{i=1}^{n-1} \sum_{j=i+1}^n \frac{(i-1)(n-j+1)}{n^2(n-1)}$$
.

En posant k = i - 1 dans la première somme et k = n - j + 1 dans la dernière somme, on trouve :

$$\begin{split} V(X_n) &= \frac{1}{n^2} \sum_{k=0}^{n-1} k \left(n - k \right) - \frac{2}{n^2 \left(n - 1 \right)} \sum_{i=1}^{n-1} \left(i - 1 \right) \sum_{k=1}^{n-i} k \;. \\ V(X_n) &= \frac{1}{n^2} \left(n \sum_{k=0}^{n-1} k - \sum_{k=0}^{n-1} k^2 \right) - \frac{2}{n^2 \left(n - 1 \right)} \sum_{i=1}^{n-1} \left(i - 1 \right) \times \frac{\left(n - i \right) \left(n - i + 1 \right)}{2} \;. \\ V(X_n) &= \frac{1}{n^2} \left(n \sum_{k=0}^{n-1} k - \sum_{k=0}^{n-1} k^2 \right) - \frac{1}{n^2 \left(n - 1 \right)} \left(\sum_{i=1}^{n-1} i^3 - 2 \left(n + 1 \right) \sum_{i=1}^{n-1} i^2 + \left(n^2 + 3n + 1 \right) \sum_{i=1}^{n-1} i - \left(n^2 + n \right) \sum_{i=1}^{n-1} 1 \right) \\ V(X_n) &= \frac{1}{n^2} \left(\frac{n^2 \left(n - 1 \right)}{2} - \frac{\left(n - 1 \right) n \left(2n - 1 \right)}{6} \right) \\ &- \frac{1}{n^2 \left(n - 1 \right)} \left(\frac{\left(n - 1 \right)^2 n^2}{4} - \frac{2 \left(n^2 - 1 \right) n \left(2n - 1 \right)}{6} + \left(n^2 + 3n + 1 \right) \frac{n \left(n - 1 \right)}{2} - \left(n^2 + n \right) \left(n - 1 \right) \right) \right] \\ V(X_n) &= \frac{n^2 - 1}{6n} - \frac{n \left(n - 1 \right)}{n^2 \left(n - 1 \right)} \left(\frac{\left(n - 1 \right) n}{4} - \frac{2 \left(n + 1 \right) \left(2n - 1 \right)}{6} + \frac{n^2 + 3n + 1}{2} - \left(n + 1 \right) \right) \\ V(X_n) &= \frac{n^2 - 1}{6n} - \frac{1}{n} \left(\frac{3 \left(n - 1 \right) n}{12} - \frac{4 \left(n + 1 \right) \left(2n - 1 \right)}{12} + \frac{6 \left(n^2 + 3n + 1 \right)}{12} - \frac{12 \left(n + 1 \right)}{12} \right) \end{split}$$

Conclusion:

$$V(X_n) = \frac{n+1}{12}$$

Exercice 2

1) C'est une question de cours et on sait que :

 $V(X_n) = \frac{n^2 - 1}{6n} - \frac{n^2 - n - 2}{12n} = \frac{2(n^2 - 1) - (n^2 - n - 2)}{12n}.$

$$E(X_1) = \frac{\theta}{2}$$
 et $V(X_1) = \frac{\theta^2}{12}$

2) a) S_n est un estimateur en tant que fonction de l'échantillon $(X_1, X_2, ..., X_n)$, indépendante du paramètre θ . Par linéarité de l'espérance, on trouve : $E(S_n) = \frac{2}{n} \sum_{k=1}^n E(X_k) = \frac{2}{n} \sum_{k=1}^n \frac{\theta}{2} = \frac{1}{n} \times n\theta = \theta$. On peut donc conclure :

 S_n est un estimateur sans biais de θ

b) Comme S_n est un estimateur sans biais de θ , son risque quadratique est égal à sa variance et, par indépendance, on obtient : $r_{\theta}(S_n) = V(S_n) = \frac{4}{n^2}V\left(\sum_{k=1}^n X_k\right)$. Les variables $X_1,...,X_n$ sont mutuellement indépendantes donc on a : $r_{\theta}(S_n) = V(S_n) = \frac{4}{n^2}\sum_{k=1}^n V(X_k) = \frac{4}{n^2}\sum_{k=1}^n \frac{\theta^2}{12} = \frac{4}{n^2} \times \frac{n\theta^2}{12}$ En simplifiant :

$$r_{\theta}\left(S_{n}\right) = \frac{\theta^{2}}{3n}$$

c) En appliquant l'inégalité de Bienaymé-Tchebychev, on a, pour tout $\varepsilon > 0$:

$$P(|S_n - E(S_n)| \ge \varepsilon) \le \frac{V(S_n)}{\varepsilon^2}$$

En remplaçant espérance et variance de S_n par leur valeur, on obtient : $P(|S_n - \theta| \ge \varepsilon) < \frac{\theta^2}{3n\varepsilon^2}$.

Comme une probabilité est positive et comme $\lim_{n\to+\infty}\frac{\theta^2}{3n\epsilon^2}=0$, on trouve par encadrement :

$$\lim_{n \to +\infty} P(|S_n - \theta| \ge \varepsilon) = 0$$

Par définition, on peut conclure que S_n est un estimateur convergent de θ .

3) a) Comme $T_n = \max(X_1,...,X_n)$, on a: $\forall x \in \mathbb{R}$, $F_n(x) = P\left(\bigcap_{k=1}^n [X_k \le x]\right)$. Par indépendance des variables $X_1,...,X_n$, on en déduit: $\forall x \in \mathbb{R}$, $F_n(x) = \prod_{k=1}^n P(X_k \le x)$. Comme les variables X_k suivent toutes la même loi uniforme sur $[0,\theta]$, on a:

$$F_n(x) = \begin{cases} 0 & \text{si } x < 0 \\ \left(\frac{x}{\theta}\right)^n & \text{si } 0 \le x \le \theta \\ 1 & \text{si } x > \theta \end{cases}$$

En dérivant sauf en 0 et θ , on a : $F_n'(x) = \begin{cases} 0 & \text{si } x < 0 \\ \frac{n x^{n-1}}{\theta^n} & \text{si } 0 < x < \theta \\ 0 & \text{si } x > \theta \end{cases}$

En posant, par exemple, $f_n(0) = 0$ et $f_n(0) = \frac{n}{\theta}$, on obtient une densité f_n de T_n , donnée par :

$$f_n(x) = \begin{cases} 0 & \text{si } x < 0 \\ \frac{n x^{n-1}}{\theta^n} & \text{si } 0 \le x \le \theta \\ 0 & \text{si } x > \theta \end{cases}$$

b) Comme la fonction $t \mapsto t f_n(t)$ est continue sur $[0,\theta]$ et nulle ailleurs, on est certain que T_n possède une espérance et on a : $E(T_n) = \int_0^\theta t f_n(t) dt = \frac{n}{\theta^n} \int_0^\theta t^n dt = \frac{n}{\theta^n} \left[\frac{t^{n+1}}{n+1} \right]_0^\theta$ Finalement, on a :

$$E(T_n) = \frac{n}{n+1}\theta$$

En posant $U_n = \frac{n+1}{n}T_n$, on a, par linéarité de l'espérance : $E(U_n) = \frac{n+1}{n}E(T_n) = \frac{n+1}{n} \times \frac{n}{n+1}\theta = \theta$. Ainsi, U_n est un estimateur sans biais de θ .

c) La fonction $t \mapsto t^2 f_n(t)$ est continue sur $[0,\theta]$ et nulle ailleurs, on est certain que T_n possède un moment d'ordre 2 et on a : $E(T_n^2) = \int_0^\theta t^2 f_n(t) dt = \frac{n}{\theta^n} \int_0^\theta t^{n+1} dt = \frac{n}{\theta^n} \left[\frac{t^{n+2}}{n+2} \right]_0^\theta = \frac{n}{n+2} \theta^2$.

On en déduit : $V(T_n) = \frac{n}{n+2}\theta^2 - \left(\frac{n}{n+1}\theta\right)^2$

On trouve alors:

$$V(T_n) = \frac{n\theta^2}{(n+1)^2(n+2)}$$

En notant $b_{\theta}(T_n)$ le biais de T_n en tant qu'estimateur de θ , on a : $b_{\theta}(T_n) = E(T_n) - \theta = -\frac{\theta}{n+1}$. Grâce à la formule $r_{\theta}(T_n) = V(T_n) + b_{\theta}(T_n)^2$, on a alors : $r_{\theta}(T_n) = \frac{n\theta^2}{(n+1)^2(n+2)} + \frac{\theta^2}{(n+1)^2}$. Après simplification, on a :

$$r_{\theta}(T_n) = \frac{2\theta^2}{(n+1)(n+2)}$$

d) En appliquant l'inégalité de Markov à la variable positive $(T_n - \theta)^2$ qui a bien une espérance, on trouve, pour tout $\varepsilon > 0$: $P((T_n - \theta)^2 \ge \varepsilon^2) \le \frac{E((T_n - \theta)^2)}{\varepsilon^2}$, c'est-à-dire: $0 \le P((T_n - \theta)^2 \ge \varepsilon^2) \le \frac{r_\theta(T_n)}{\varepsilon^2}$

En appliquant la fonction racine carrée qui est une bijection croissante de \mathbb{R}_+ sur \mathbb{R}_+ , et en notant que $\sqrt{\epsilon^2} = \left|\epsilon\right| = \epsilon$, on a $\left(\left(T_n - \theta\right)^2 \ge \epsilon^2\right) = \left(\left|T_n - \theta\right| \ge \epsilon\right)$ et on en déduit : $0 \le P\left(\left|T_n - \theta\right| \ge \epsilon\right) \le \frac{r_\theta\left(T_n\right)}{\epsilon^2}$. Comme $\lim_{n \to +\infty} r_\theta\left(T_n\right) = \lim_{n \to +\infty} \frac{2\theta^2}{(n+1)(n+2)} = 0$, on a par encadrement :

$$\lim_{n \to +\infty} P(|T_n - \theta| \ge \varepsilon) = 0$$

Par définition, ici aussi, T_n est un estimateur convergent de θ .

- 4) S_n est un estimateur sans biais et convergent de θ et T_n est un estimateur asymptotiquement sans biais et convergent de θ . A priori, ils sont tous les deux satisfaisants, mais, pour préciser davantage, on a $r_{\theta}(S_n) \underset{+\infty}{\sim} \frac{\theta^2}{3n}$ et $r_{\theta}(T_n) \underset{+\infty}{\sim} \frac{2\theta^2}{n^2}$, ce qui prouve que $r_{\theta}(T_n)$ est négligeable devant $r_{\theta}(S_n)$ au voisinage de $+\infty$, et ainsi T_n est plus rapidement convergent que S_n : on choisira donc, malgré son biais, T_n plutôt que S_n , voire même lui préférer $\frac{n+1}{n}T_n$.
- 5) Pour tout ε appartenant à $[0,\theta]$, on a :

$$P(|T_n - \theta| \ge \varepsilon) = P((T_n - \theta \ge \varepsilon) \cup (T_n - \theta \le -\varepsilon)) = P(T_n - \theta \ge \varepsilon) + P(T_n - \theta \le -\varepsilon).$$

$$P(|T_n - \theta| \ge \varepsilon) = P(T_n \ge \theta + \varepsilon) + P(T_n \le \theta - \varepsilon).$$

Comme T_n est une variable aléatoire à densité, on en déduit :

$$P(|T_n - \theta| \ge \varepsilon) = 1 - F_n(\theta + \varepsilon) + F_n(\theta - \varepsilon)$$

Comme $\varepsilon > 0$, on a $F_n(\theta + \varepsilon) = 1$ et ainsi $P(|T_n - \theta| \ge \varepsilon) = F_n(\theta - \varepsilon)$.

Comme $0 < \varepsilon \le \theta$, on a $0 \le \theta - \varepsilon < \theta$, et on a :

$$P(\mid T_n - \theta \mid \geq \varepsilon) = \left(\frac{\theta - \varepsilon}{\theta}\right)^n$$

On sait que $0 \le \theta - \varepsilon < \theta$ donc $0 \le \frac{\theta - \varepsilon}{\theta} < 1$, ce qui permet d'écrire : $\lim_{n \to +\infty} \left(\frac{\theta - \varepsilon}{\theta}\right)^n = 0$. Grâce à la question précédente, on retrouve bien le résultat de la question 3d) :

$$\lim_{n \to +\infty} P(\mid T_n - \theta \mid \ge \varepsilon) = 0$$

Problème

Préliminaire

1) La fonction $t \mapsto t^k e^{-t}$ est continue sur \mathbb{R} donc sur l'intervalle $[x, +\infty[$. De plus, on sait (croissances comparées) que $\lim_{k \to +\infty} t^{k+2} e^{-t} = 0$ donc $t^k e^{-t} = o\left(\frac{1}{t^2}\right)$ et comme l'intégrale $\int_1^{+\infty} \frac{1}{t^2} dt$ est convergente, le critère de négligeabilité pour les intégrales de fonctions continues et positives assure

que l'intégrale $\int_1^{+\infty} t^k e^{-t} dt$ est également convergente. Comme l'intégrale $\int_x^1 t^k e^{-t} dt$ ne pose aucun problème, on peut conclure :

$$\int_{x}^{+\infty} t^{k} e^{-t} dt \text{ est convergente}$$

2) Si P est une fonction de E, il existe un entier naturel n et des réels $a_0, a_1, ..., a_n$ tels que, pour tout réel t, on ait : $P(t) = \sum_{k=0}^{n} a_k t^k$. Dès lors l'intégrale $\int_{x}^{+\infty} P(t)e^{-t}dt$ est convergente en tant que combinaison linéaire d'intégrales convergentes.

Partie 1

3) a) On a $I_0(x) = \int_x^{+\infty} e^{-t} dt = \lim_{A \to +\infty} \int_x^A e^{-t} dt = \lim_{A \to +\infty} \left[-e^{-t} \right]_x^A = \lim_{A \to +\infty} \left(e^{-x} - e^{-A} \right)$ Comme $\lim_{A \to +\infty} e^{-A} = 0$, on obtient:

$$I_0(x) = e^{-x}$$

b) On a $I_1(x) = \int_x^{+\infty} te^{-t} dt = \lim_{A \to +\infty} \int_x^A te^{-t} dt$. On fait une intégration par parties en posant u(t) = t et $v'(t) = e^{-t}$, avec u'(t) = 1 et $v(t) = -e^{-t}$. Les fonctions u et v sont de classe C^1 sur \mathbb{R} et on obtient : $\int_x^A te^{-t} dt = \left[-te^{-t}\right]_x^A + \int_x^A e^{-t} dt = -Ae^{-A} + xe^{-x} + \int_x^A e^{-t} dt$. Après passage à la limite quand A tend vers $+\infty$, on trouve : $I_1(x) = xe^{-x} + I_0(x)$. En remplaçant $I_0(x)$, on obtient bien :

$$I_1(x) = (x+1)e^{-x}$$

De la même manière, on a $I_2(x) = \int_x^{+\infty} t^2 e^{-t} dt = \lim_{A \to +\infty} \int_x^A t^2 e^{-t} dt$. On fait une intégration par parties en posant cette fois $u(t) = t^2$ et $v'(t) = e^{-t}$, avec u'(t) = 2t et $v(t) = -e^{-t}$. Les fonctions u et v sont de classe C^1 sur \mathbb{R} et on obtient : $\int_x^A t^2 e^{-t} dt = \left[-t^2 e^{-t} \right]_x^A + 2 \int_x^A t e^{-t} dt = -A^2 e^{-A} + x^2 e^{-x} + 2 \int_x^A t e^{-t} dt$. Après passage à la limite quand A tend vers $+\infty$, on trouve : $I_2(x) = x^2 e^{-x} + 2I_1(x)$. En remplaçant $I_1(x)$, on obtient bien :

$$I_2(x) = (x^2 + 2x + 2)e^{-x}$$

4) La linéarité de φ_2 provient de la linéarité de l'intégration. En effet, pour tout couple (P,Q) de polynômes de E_2 et pour tout réel λ , on a :

$$(\varphi_2(\lambda P + Q))(x) = e^x \int_x^{+\infty} (\lambda P(t) + Q(t)) e^{-t} dt = \lambda e^x \int_x^{+\infty} P(t) e^{-t} dt + e^x \int_x^{+\infty} Q(t) e^{-t} dt$$
$$= \lambda (\varphi_2(P))(x) + (\varphi_2(Q))(x) = (\lambda \varphi_2(P) + \varphi_2(Q))(x).$$

Ceci étant valable pour tout réel x, on a donc :

$$\varphi_2(\lambda P + Q) = \lambda \varphi_2(P) + \varphi_2(Q)$$

Pour finir, en posant $P(t) = a_0 + a_1 t + a_2 t^2$, on a :

$$(\varphi_2(P))(x) = e^x \int_x^{+\infty} (a_0 + a_1 t + a_2 t^2) e^{-t} dt = a_0 e^x I_0(x) + a_1 e^x I_1(x) + a_2 e^x I_2(x).$$

On en déduit : $(\varphi_2(P))(x) = a_0 + a_1(x+1) + a_2(x^2+2x+2) = (a_0 + a_1 + 2a_2) + (a_1 + 2a_2)x + a_2x^2$.

Ceci prouve que $\varphi_2(P)$ appartient à E_2 .

Conclusion:

 φ_2 est un endomorphisme de E_2

5) a) En posant $a_0 = 1$ et $a_1 = a_2 = 0$ dans les lignes précédentes, on obtient : $(\varphi_2(e_0))(x) = 1$. On a donc :

$$\varphi_2(e_0)=1$$

En posant $a_0 = 1$ et $a_1 = a_2 = 0$ dans les lignes précédentes, on obtient : $(\varphi_2(e_1))(x) = 1 + x$. On a donc :

$$\varphi_2(e_1) = e_0 + e_1$$

Avec $a_2 = 1$ et $a_0 = a_1 = 0$, on obtient: $(\varphi_2(e_2))(x) = 2 + 2x + x^2$.

On a donc:

$$\varphi_2(e_2) = 2e_0 + 2e_1 + e_2$$

b) On en déduit la matrice A de φ_2 dans la base (e_0, e_1, e_2) :

$$A = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

c) L'endomorphisme φ_2 possède comme seule valeur propre le réel 1 (c'est la seule valeur propre de A qui est triangulaire avec seulement des "1" sur sa diagonale) donc il n'est pas diagonalisable sinon sa matrice A serait semblable à la matrice I_3 et il existerait une matrice inversible Q telle que $A = QI_3Q^{-1} = I_3$, ce qui n'est pas le cas.

Comme 0 n'est pas valeur propre de φ_2 , l'endomorphisme φ_2 est bijectif.

6) a) On a
$$A - I = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$
 et:

$$(A-I)^2 = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \text{ et } (A-I)^3 = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Bilan:

$$N^2 = \begin{pmatrix} 0 & 0 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \text{ et } N^3 = 0$$

b) On peut écrire A = (A - I) + I = N + I et appliquer la formule du binôme puisque les matrices

$$N$$
 et I commutent, ce qui donne : $\forall n \geq 2$, $A^n = \sum_{k=0}^n \binom{n}{k} N^k I^{n-k} = \sum_{k=0}^n \binom{n}{k} N^k$.

Comme $N^3 = 0$, on a, pour tout entier k supérieur ou égal à $3: N^k = N^3 N^{k-3} = 0$ et il reste :

$$\forall n \geq 2, \ A^n = \sum_{k=0}^{2} \binom{n}{k} N^k = \binom{n}{0} I + \binom{n}{1} N + \binom{n}{2} N^2 = I + nN + \frac{n(n-1)}{2} N^2.$$

En remplaçant :

$$\forall n \geq 2, \ A^n = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + n \begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} + \frac{n(n-1)}{2} \begin{pmatrix} 0 & 0 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & n & 2n + n(n-1) \\ 0 & 1 & 2n \\ 0 & 0 & 1 \end{pmatrix}.$$

Conclusion:

$$\forall n \ge 2, \ A^n = \begin{pmatrix} 1 & n & n(n+1) \\ 0 & 1 & 2n \\ 0 & 0 & 1 \end{pmatrix}$$

Partie 2

7) On peut écrire, grâce à la relation de Chasles :

$$\forall x \in \mathbb{R}, \ (\varphi(P))(x) = e^x \int_0^{+\infty} P(t)e^{-t}dt - e^x \int_0^x P(t)e^{-t}dt.$$

Les fonctions $x \mapsto e^x$ et $x \mapsto \int_0^x P(t)e^{-t}dt$ sont de classe C^1 sur \mathbb{R} (cette dernière est une primitive de fonction continue) et l'intégrale $\int_0^{+\infty} P(t)e^{-t}dt$ est une constante, ce qui prouve que :

$$\varphi(P)$$
 est de classe C^1 sur \mathbb{R}

En dérivant, on obtient : $\forall x \in \mathbb{R}$, $(\varphi(P))'(x) = e^x \int_0^{+\infty} P(t)e^{-t}dt - e^x \int_0^x P(t)e^{-t}dt - e^x P(x)e^{-x}$.

Avec la relation de Chasles et en simplifiant, on a : $\forall x \in \mathbb{R}$, $(\varphi(P))'(x) = e^x \int_x^{+\infty} P(t)e^{-t}dt - P(x)$. Finalement :

$$\left(\varphi(P)\right)' = \varphi(P) - P$$

8) Soit P un élément de Ker φ . On a $\varphi(P)=0$ et, en dérivant, on en déduit : $(\varphi(P))'=0$. D'après la question précédente, on a : $\varphi(P)-P=0$. Comme $\varphi(P)=0$, il reste : P=0. La réciproque est évidente puisque le polynôme nul est dans Ker φ . On a donc :

$$\operatorname{Ker} \varphi = \{0\}$$

On peut conclure:

φ est injectif

9) a) Soit un polynôme P, non nul, vecteur propre de φ associé à la valeur propre λ . On a : $\varphi(P) = \lambda P$. En dérivant, on obtient : $(\varphi(P))' = \lambda P'$.

En utilisant la relation obtenue à la question 7), on trouve : $\varphi(P) - P = \lambda P'$. Comme $\varphi(P) = \lambda P$, on a finalement : $\lambda P - P = \lambda P'$.

On a supposé $\lambda \neq 0$ donc on peut écrire :

$$P' = \frac{\lambda - 1}{\lambda} P$$

b) Comme
$$h(x) = P(x) \exp\left(\frac{1-\lambda}{\lambda}x\right)$$
, on a : $h'(x) = P'(x) \exp\left(\frac{1-\lambda}{\lambda}x\right) + P(x) \frac{1-\lambda}{\lambda} \exp\left(\frac{1-\lambda}{\lambda}x\right)$.
On a, en factorisant : $h'(x) = \exp\left(\frac{1-\lambda}{\lambda}x\right) \left(P'(x) + P(x)\frac{1-\lambda}{\lambda}\right)$.

Comme $P' = \frac{\lambda - 1}{\lambda} P$, on obtient : $\forall x \in \mathbb{R}$, h'(x) = 0. Ceci prouve que h est constante sur \mathbb{R} .

Il existe donc un réel K tel que, pour tout réel x, on a : h(x) = K.

En remplaçant h(x) par son expression, on obtient : $P(x) \exp\left(\frac{1-\lambda}{\lambda}x\right) = K$, ce qui donne :

$$P(x) = K \exp\left(\frac{\lambda - 1}{\lambda}x\right)$$

- c) Comme P est un polynôme, il faut chercher les valeurs de λ pour lesquelles la fonction $x \mapsto K \exp\left(\frac{\lambda 1}{\lambda}x\right)$ est polynomiale.
- Pour $\lambda = 1$, c'est évident : les candidats sont les polynômes constants.
- Si l'on cherche maintenant les polynômes non constants, deux cas sont à considérer :

Pour $\lambda \in]0,1[$, on a $\lim_{x\to +\infty} \exp\left(\frac{\lambda-1}{\lambda}x\right) = 0$, ce qui contredit le fait que P soit un polynôme.

Pour $\lambda \in]-\infty, 0[\cup]1, +\infty[$, on a $\lim_{x\to -\infty} \exp\left(\frac{\lambda-1}{\lambda}x\right) = 0$, ce qui contredit aussi le fait que P soit un polynôme.

Comme les polynômes constants sont effectivement vecteurs propres de φ associés à la valeur propre 1 (facile à vérifier puisque, si l'on a P(x) = K, alors $(\varphi(P))(x) = e^x \int_x^{+\infty} K e^{-t} dt = K e^x I_0(x) = K$), on conclut :

$$Sp(\varphi) = \{1\}$$

Le seul sous-espace propre de φ est l'espace vectoriel des polynômes constants, associé à la valeur propre 1 (ce qui confirme le résultat obtenu à la partie 1).

ADMISSION SUR TITRES EN PREMIERE ANNEE

RAPPORT DE CORRECTION 2016

Epreuve de MATHEMATIQUES

Présentation de l'épreuve.

L'épreuve, longue comme d'habitude, comportait trois exercices, ce qui permettait de juger les candidats sur la presque totalité du programme de l'épreuve : algèbre linéaire, analyse, probabilités et statistiques. Les correcteurs ont trouvé le sujet adapté et très sélectif tout en respectant scrupuleusement le programme.

- L'exercice 1, portant sur le programme de probabilités, proposait l'étude d'une distribution aléatoire de cartes selon le processus suivant : n cartes, C_1 , C_2 , ..., C_n , sont distribuées, les unes après les autres, à n joueurs, J_1 , J_2 , ..., J_n , de la façon suivante : la carte C_1 est donnée au joueur J_1 , puis la carte C_2 est distribuée de manière équiprobable entre J_1 et J_2 , la distribution se poursuivant de telle manière que, pour tout i de $[\![1,n]\!]$, la carte C_i soit distribuée de manière équiprobable entre J_1 , J_2 , ..., J_i , la dernière carte C_n étant donc distribuée de manière équiprobable entre J_1 , J_2 , ..., J_n .
- L'exercice 2, portant lui aussi, sur le programme de probabilités, avait pour but d'estimer le réel θ , associé à une variable aléatoire X suivant la loi uniforme sur $[0,\theta]$, à l'aide de deux estimateurs,

$$S_n = \frac{2}{n} \sum_{k=1}^n X_k$$
 et $T_n = \max(X_1, ..., X_n)$, fonctions d'un échantillon de la loi de X .

• L'exercice 3, portant sur le programme d'analyse et d'algèbre linéaire, avait pour objectif d'étudier l'application φ qui, à toute fonction polynomiale P, associe la fonction notée $\varphi(P)$ définie par :

$$\forall x \in \mathbb{R}, (\varphi(P))(x) = e^x \int_x^{+\infty} P(t)e^{-t}dt$$

Dans une première partie, on étudiait φ lorsque P appartient à l'espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à 2, et dans la deuxième partie, on étudiait φ lorsque P appartient à l'espace vectoriel des polynômes à coefficients réels.

Statistiques.

Pour les 606 candidats ayant composé, la moyenne obtenue à cette épreuve est de 10,31 sur 20 (supérieure de 0,9 point à celle de l'an dernier) pour un écart-type d'environ 5,44 (0,7 point audessous de l'an dernier), la médiane étant, quant à elle, égale à 10,75.

14,3 % des candidats obtiennent une note inférieure ou égale à 4 (6,5% ont une note inférieure ou égale à 2).

25% des candidats ont entre 8 et 12.

10,6 % des candidats obtiennent une note supérieure ou égale à 18.

Analyse des copies.

Les correcteurs notent une fois encore que le niveau est très hétérogène, ceci étant, comme d'habitude, dû aux origines scolaires et universitaires diverses des candidats. La moyenne, meilleure que l'année dernière, pourrait être due au nombre un peu moins élevé de candidats ayant composé à cette épreuve. Mis à part, d'un côté quelques très brillants candidats ayant des connaissances bien supérieures à celles exigées par le programme, et de l'autre, un certain nombre de candidats très mal préparés ayant des notes extrêmement basses (ces candidats connaissent assez souvent les concepts mais ne les maîtrisent pas du tout), les correcteurs trouvent l'ensemble d'un niveau très honorable, tout en regrettant que d'assez nombreux candidats semblent s'être "spécialisés" (soit en analyse, soit en algèbre, soit en probabilités), certainement par manque de temps pour préparer cette épreuve. Rappelons que ces trois "compartiments" du programme de mathématiques sont essentiels pour une bonne continuation des études à l'EDHEC.

En ce qui concerne la crédibilité des copies, signalons les quelques points suivants :

Exercice 1

- Peu de candidats sont réellement crédibles sur les questions de réflexion probabiliste.
- Rares sont les candidats qui connaissent l'espérance du produit de deux variables de Bernoulli.
- Nous rappelons qu'une somme de variables de Bernoulli n'est pas toujours une variable binomiale.

Exercice 2

- Trop de candidats ne connaissent pas leur cours (espérance et variance d'une loi uniforme à densité).
- Beaucoup de confusions avec la loi uniforme discrète.
- Montrer qu'une variable aléatoire est un estimateur sans biais, c'est d'abord montrer que cette variable est un estimateur (ce qui n'a été fait par aucun candidat).
- L'inégalité de Markov semble totalement inconnue des candidats.

Exercice 3

- La notion d'intégrabilité n'est pas au programme.
- Les notions de déterminant, endomorphisme nilpotent, polynôme caractéristique, polynôme minimal ne sont pas au programme.
- Oser prétendre que $(1-X)^3$ est un polynôme scindé à racines simples est pour le moins étonnant et prouve qu'il est inutile de se promener en dehors du programme.
- Écrire $\varphi'(P)$ alors que φ est un endomorphisme de l'espace vectoriel des fonctions polynomiales prouve un grand désarroi...
- Un nombre important de candidats croient bon d'étudier la convergence de l'intégrale $\int_{x}^{+\infty} t^{k} e^{-t} dt$ pour la borne $-\infty$, ce qui est parfaitement surréaliste.
- Presque tous les candidats pensent que si $\int_{x}^{+\infty} P(t)e^{-t} dt = 0$, où P désigne une fonction polynomiale, alors $P(t)e^{-t} = 0$. Certains signalant même que la fonction $t \mapsto P(t)e^{-t}$ est positive!

Conclusion.

L'épreuve a permis de repérer et de mettre en valeur les candidats les mieux préparés (il y en a de très bons) et les plus aptes à trouver leur place dans des études exigeantes qui nécessitent rigueur et honnêteté intellectuelle.

Nous conseillons, comme par le passé, aux futurs candidats de se préparer d'une façon complète, en essayant de ne négliger aucun point du programme : les trois "compartiments" de ce programme (analyse, algèbre linéaire et probabilités) sont essentiels pour une bonne continuation des études à l'EDHEC.

Pour terminer, les correcteurs rappellent que les candidats doivent s'en tenir strictement aux termes du programme de cette épreuve (disponible sur le site de l'EDHEC). À ce sujet, il est mal vu de signaler sur une copie que les questions posées ne sont pas au programme (alors qu'elles le sont)!!!